
Position Paper: Process Isolation and Exascale
Operating Systems and Runtimes

Noah Evans
Alcatel–Lucent Bell Laboratories
noah.evans@alcatel-lucent.com

Abstract—Exascale Operating Systems and Runtimes need to
balance performance and backwards compatibility concerns to
meet Exascale challenges. This position paper discusses the use of
dynamic linking to allow traditional executables to break process
isolation, sacrificing security for performance and compatibility.
The primary goal of this method of execution is moving compu-
tation to data, either by loading a user process inside the kernel
boundary, avoiding the need for boundary crossings in Inter-
node communication, or by moving two processes to the same
address space, allowing them to communicate using traditional
APIs without the need for new shared memory abstractions.

I. INTRODUCTION

We believe that it is possible to adapt OS abstractions to an
Exascale context by changing the underlying execution model,
while preserving the interface, preserving expressivity while
achieving the necessary performance.
Many of the challenges in developing Exascale Operating
Systems and Runtimes (OS/R) systems arise from the need
to develop systems that allow the user to combine large (and
potentially proprietary)binary code bases while still using the
available hardware and network resources in a scalable and
efficient manner. Systems must balance:
Performance, ensuring that applications complete in a timely
and predictable manner.
Compatibility, allowing users to combine a variety of binary-
only libraries and executables from different vendors into new
applications.
We observed the interaction of these concerns in the process
of developing right weight kernels [1] with minimal noise for
the FastOS project.
One of the main sources of these interactions is support for
legacy APIs, especially the system call API and file system
operations. System calls incur frequent user to kernel transi-
tions and introduce process to process IPC overhead. These
overheads lead to large inter and intranode communication
latencies.
The traditional way to eliminate these latencies is using
OS bypass, where the application contains the device driver,
avoiding the user to kernel transitions.
However this approach breaks compatibility with existing
APIs and legacy software, requiring users to re-implement
application interfaces and OS functionality to support OS
bypass.
We are currently exploring an OS/R that we believe that we
can provide a traditional API with an underlying such that
we can equal OS bypass in performance. It will achieve this

performance gain by moving user processes inside the kernel
and by grouping multiple user processes into the same address
space, trading isolation for performance.

II. CHALLENGES

The current, most popular approach is to either use the
traditional operating system stripped down to minimize noise
such as Zeptos [2] or by using a Lightweight Kernel providing
commodity OS ABI and API support. [3]
However both of these approaches cause problems as paring
down full featured operating systems to meet the HPC perfor-
mance standards lead to a situation where compatibility and
performance are compromised.
The approach taken by the NIX [4] and the FusedOS [5]
projects aims to provide the appearance and convenient ab-
stractions of an operating system while eliminating many of
the underlying inefficiencies.
This leads to a hybrid approach, where the kernel adds new
process types to handle core heterogenity and limit OS noise.
A hybrid approach such as this, while providing deterministic
execution time and binary compatibility with legacy software,
still relies on the traditional process isolation model
, which forces applications although they may be running
exclusively on a core, to rely on some form of interrupt or
messaging to communicate with the kernel or other processes
in order too perform IPC.
The overhead of these superfluous calls leads to large intra–
and inter–core latencies as applications are forced to commu-
nicate across kernel and process address space boundaries.

III. OUR SOLUTION

We are in the process of building a prototype implemen-
tation that provides better intra- and inter-node performance
by limiting data movement between user/kernel and address
space boundaries.
The key observation that underlies this approach is that it is
possible to adapt OS abstractions to an Exascale context by
changing the underlying execution model, while preserving the
interface.
This allows users to continue to use old binary software that
relies on commodity APIs while still taking advantage of
improved scalability.
We achieve this improvement by allowing the user to trade
isolation for performance in running their applications, while
preserving traditional OS interfaces.



Our approach aims to decrease inter-node communication
latency by moving processes with I/O intensive IPCs into the
kernel, eliminating the need for user space pinning of network
devices. Devices are accessed directly through the same system
call api without causing a context switch.
On the other hand, moving communicating user processes
that run on a node to the same address space together means
system calls between processes, such as writing on a pipe file
descriptor or setting up shared memory are no longer costly.

IV. REMARKS /LIMITATIONS

By sacrificing process isolation for performance, we give up
some of the protections afforded by the ring 0 kernel boundary.
While these may not be available, especially on heterogeneous
systems. We recognize that another security model is required
for Exascale systems base on a similar approach.
One potential solution would be to modify a hardware virtu-
alization system like Palacios [3] to use modern virtualization
hardware support, in order to provide a more secure environ-
ment for processes crossing boundaries, potentially by using
nested page tables to prevent processes operating in kernel
memory from accessing all of the kernel memory.
Another solution might be to provide a sandboxed environment
which restricts the operations available to processes that are
allowed to violate boundaries.
While the implementation of the mechanism that moves pro-
cesses between boundaries is complete, the support of user
space and kernel space system call APIs without isolation is
currently still under development.

We are also building a new operating system from scratch,
Osprey [6] aimed at predictable cloud computing and HPC
environments that incorporates many of these ideas.

V. CONCLUSIONS

In this position paper, we described a scheme and prototype
implementation of an Exascale OS/R system that allows the
user to balance the performance and backwards compatibility
of their applications.
With our approach, users can choose to minimize the latency
of inter-node communication by allowing processes to operate
inside the kernel boundary.
As an alternative, users can minimize the cost of inter-process
communication that does not leave a single node by loading
and running multiple applications in the same address space.
The ability of users to select the appropriate mechanism allows
to improve the utilitization of hardware resources.

REFERENCES

[1] Ronald G. Minnich, Matthew J. Sottile, Sung-Eun Choi, Erik Hendriks
and Jim McKie. Right-Weight Kernels: An Off-the-Shelf Alternative to
Custom Light-Weight Kernels. In ACM SIGOPS Operating Systems
Review, 2006, vol. 40, no. 2, pp. 22-28.

[2] ZeptoOS: The small linux for big computers
http://www.mcs.anl.gov/research/projects/zeptoos/.

[3] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, S.
Jaconette, M. Levenhagen, R. Brightwell, and P. Widener. Palacios and
Kitten: High performance operating systems for scalable virtualized and
native supercomputing. Technical report, EECS Northwestern University,
July 2009.

[4] Francisco J. Ballesteros, Noah Evans, Charles Forsyth, Gorka Guardiola,
Jim McKie, Ron Minnich, Enrique Soriano. NIX: A Case for a Manycore
System for Cloud Computing. Bell Labs Technical Journal 2012, Vol. 17,
No. 2.

[5] Robert W. Wisniewski, Todd Inglett, Yoonho Park, Bryan Rosenburg, Eric
Van Hensbergen, Kyung Dong Ryu. FusedOS: Fusing LWK Performance
with FWK Functionality in a Heterogeneous Environment. Submitted to
Supercomputing 2012

[6] Jan Sacha, Jeff Napper, Hening Schild, Sape Mullender, Jim McKie. Os-
prey: Operating System for Predictable Clouds. The Second International
Workshop on Dependability of Clouds, Data Centers and Virtual Machine
Technology, June 2012.


